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Rough set model with double quantification satisfies the requirement of quantitative 
information in practical applications, it has better fault tolerance than probabilistic rough 
set model considering only relative quantification and graded rough set model considering 
only absolute quantification. In this paper, two kinds of consistency levels are introduced 
from the perspective of double quantification in an ordered information system, namely 
relative quantitative consistency level and absolute quantitative consistency level. The 
single-quantitative variable consistency dominance-based rough set models based on these 
two kinds of quantitative consistency levels and their basic properties with the relevant 
three-way decision rules are discussed respectively in an ordered information system. 
Moreover, two kinds of double-quantitative variable consistency dominance-based rough 
set models and their basic properties with the relevant decision rules based on these two 
kinds of quantitative consistency levels are introduced. A consistency analysis of decision 
making in a practical case study is used to illustrate and interpret the double-quantitative 
variable consistency rough set models and the related decision rules in the ordered 
information system. The obvious shortcomings of dominance-based rough set approach 
(DRSA) without quantitative information are compared to explain the advantages of the 
quantitative variable consistency dominance-based rough sets with the two consistency 
levels in the practical case study.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Rough set theory proposed by Pawlak [39], is an extension of the classical set theory and could be regarded as a math-
ematical and soft computing tool to handle imprecision, vagueness and uncertainty in data analysis. A key notion of rough 
set theory is the approximation of a basic set by a pair of definable sets called lower and upper approximations. It is 
characterized by a zero tolerance of errors, namely, an object in the lower approximation which certainly belongs to and 
an object in the complement of upper approximation which certainly does not belong to the set. Rough set models with 
quantitative information can be used to overcome certain limitation of Pawlak rough set and its generalized models [29,55]. 
The limitation indicates that Pawlak rough set and its relevant generalizations can not deal well with quantitative problems 
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in real-life applications. The relationship between equivalence classes and the basic set is so strict that there are no fault 
tolerance mechanisms available, and the quantitative information about the degree of overlap of the equivalence classes and 
the basic set is not taken into consideration [54]. In fact, there are some degrees of inclusion relation between sets, and the 
extent of overlap of sets is important information to consider in applications.

Improving the Pawlak rough set model with quantitative information is a promising direction and expansions of the 
model that include such quantification are of particular relevance [69]. By introducing certain levels of errors, proba-
bilistic rough set (PRS) [55,59] and graded rough set (GRS) [58] are basic quantitative generalizations of Pawlak rough 
set. PRS and GRS are two fundamental expansion models that achieve strong fault tolerance capabilities by utilizing 
quantitative descriptions [69]. At present, there are some related generalized forms of these two models being studied 
[22,23,34,36,37,46,56,63,70]. In order to have a better fault-tolerance mechanism, Greco et al. presented a parameterized 
rough set model by considering the relative and absolute rough memberships in the lower approximation and upper ap-
proximation [10], and this parameterized rough set model was recalled by Yao et al. in reference [57]. The main idea 
referred to literature [10] is to improve the fault-tolerance of rough approximations by considering two parameters in a 
model. However, in fact, it is not difficult to reveal that both relative rough membership and absolute rough membership 
considered in literature [10] belong to relative quantitative information essentially, and there is no absolute quantitative 
information involved. As we know, the relative and absolute measures reflect relative accuracy and absolute accuracy from 
two different quantitative viewpoints. Relative quantitative information and absolute quantitative information are two kinds 
of quantification methodologies encountered in certain applications [31,32,68]. Double quantification regarding their fusion 
has visible semantic background and feasibility. For this purpose, several works related to the double quantification have 
been explored [6,14,26,29,30,32,44,50,60,64–67].

As an important notion in rough set theory, the information system provides a convenient basis for the representation 
of objects in terms of their attributes. Due to the existence of complexity and uncertainty, several extensions of rough set 
model have been proposed for different requirements to deal with particular problems. The existing extended research on 
rough set models can be roughly summarized into two perspectives: (1) Extending data type. In Pawlak rough set model, the 
data type is classical, that is, each object in the information system has only one definite value with regard to each attribute. 
There are various generalized rough set models presented to tackle with the related data types in different information sys-
tems, which including set-valued data, interval-valued data, fuzzy data, intuitionistic fuzzy data, etc. And the corresponding 
rough set models are respectively called set-valued rough set [40], interval-valued rough set [15,17,45], fuzzy rough set 
(rough fuzzy set) [6,29,46], and intuitionistic fuzzy rough set [16,17]. There are also incomplete data among these different 
data types, and many researchers have developed a lot of investigations on incomplete data and put forward sufficient rough 
set models [4,21,38,53,62]. (2) Extending binary relation. There are two ways to extend the binary relation, one is to promote 
the number of binary relation in an information system, the other is to change the type of binary relation. For promoting 
the number of binary relation, we know that Pawlak rough set and its generalizations are constructed based on one equiv-
alence relation in an information system, and the approximation space generated by one equivalence relation is considered 
as a granulation in an information system. In order to make rough set theory have a wider range of applications, Qian et al. 
extended Pawlak’s single-granulation rough set to the multigranulation rough set model [41]. And later, many researchers 
have extended the multigranulation rough sets [19,24,25,33,42,43,47,49–51,60]. For changing the type of binary relation, 
one can use the similarity relation [29,48], tolerance relation [3,52,58], and dominance relation [3,11,12,16,20,27,28,53,61]
to generalize the equivalence relation in Pawlak rough set model, so that relevant different rough set models based on 
different kinds of binary relations can be derived to meet different requirements.

In many real-life circumstances, the information system is no longer classical, namely, the binary relations in the in-
formation systems are not equivalence relations, but preference relations, such as dominance relation. We call this kind of 
information system as ordered information system [5,33,40,53]. It is vital to propose an extension called the dominance-
based rough set approach (DRSA) to take into account the ordering properties of criteria [7,8,11]. The innovation is mainly 
based on substitution of the indiscernibility relation (equivalence relation) in an ordered information system by a domi-
nance relation. Since Greco et al. initially studied DRSA in the year of 1998 [7,8], many scholars have investigated a variety
of rough set models based on dominance relation to solve different problems [3,9,11,12,16,18,20,27,28,33,35,53,61]. Similar 
to Pawlak rough set model, the conditions imposed on the relationship between dominating set (dominated set) and upward 
union (downward union) in DRSA are so strict that there are no fault tolerance mechanisms [1,2,10,12,18,57]. Quantitative 
information about the degree of overlap of the dominating set (dominated set) and upward union (downward union) is not 
taken into account.

In fact, we could allow a certain degree of inconsistencies to exist in real-life applications. Let us take an example. In an 
ordered information system (U , AT ∪d, V , f ), for an object xi ∈ U , the set of dominating xi is denoted by D R A (xi). Assuming 
that the number of elements in D R A (xi) is very large, such as 10000, it means that the evaluations of these 10000 elements 
under the condition attribute set A are better than that of xi , and in normal circumstances, the values of these 10000 
elements under the decision attribute set d are also better than that of xi . However, if the value of the decision attribute set 
of an element x j in D R A (xi) is inferior than that of xi for some reasons, this will lead to a very clear inconsistency situation. 
The purpose of DRSA is to construct a corresponding model to eliminate the inconsistencies between the decision attribute 
set and the condition attribute set in an ordered information system and to ensure that there is no inconsistency in the 
three decision regions obtained from the upper and lower approximations. In this case, however, the condition of defining 
DRSA is too strict to exclude xi from the positive region because only one of the 10000 elements (namely 1/10000) causes 
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the inconsistency. So it is proper to introduce the consistency level into the definition of upper and lower approximations 
to improve the flexibility of DRSA. Several works have been conducted regard to this aspect [1,10,12,13,18], however, there 
is still no relevant studies on introducing the consistency level from the double quantification viewpoint.

The purpose of this paper is to discuss the consistency decision analysis of rough set model with quantitative information 
in ordered information systems, and introduce a pair of single-quantitative variable consistency rough sets and two kinds 
of double-quantitative variable consistency rough sets to improve some results of DRSA. This is the motivation behind the 
research presented here. The paper is organized as follows. Related concepts and definitions in DRSA are reviewed briefly 
in Section 2. In Section 3, we introduce two kinds of quantitative consistency levels in an ordered information system 
from the relative accuracy and absolute accuracy viewpoint, respectively. In Section 4, the formation process of relative 
quantitative variable consistency dominance-based rough set approach (Rq-VC-DRSA) and absolute quantitative variable 
consistency dominance-based rough set approach (Aq-VC-DRSA) are presented. In Section 5, we discuss two types of double-
quantitative variable consistency dominance-based rough set approach (Dq-VC-DRSA) models and the corresponding three-
way decision rules. In Section 6, we develop an illustrative case study to do the consistency analysis of decision rules in 
DRSA and the proposed single-quantitative and double-quantitative variable consistency dominance-based rough set models 
by assuming a questionnaire survey of airline service quality. Finally, Section 7 covers some conclusions and further research 
directions.

2. Basic notions on DRSA

In this section, we review the basic concepts about DRSA in an ordered information system. The detailed description on 
DRSA could be referred to [7,8].

Definition 2.1. An information system is a tuple (U , AT , V , f ), where U is a non-empty and finite set of objects, and 
U = {x1, x2, · · ·, xn}; AT is a non-empty and finite set of attributes, and AT = {a1, a2, · · ·, am}; f = { fl|U → Vl, l ≤ m}, 
fl is the value of al on x ∈ U , Vl is the domain of al , al ∈ AT . A decision information system is an information system 
(U , AT ∪ d, V , f ), where AT ∩ d = ∅, AT is the condition attribute set, while d is called the decision attribute set.

In an information system, if the domain of an attribute is ordered according to a decreasing or increasing preference, 
then the attribute is a criterion. An information system is called an ordered information system if all condition attributes are 
criteria. In an ordered information system, �a is defined to denote the preference-ordered relation based on the condition 
attribute a. That is, ∀a ∈ A, if x �a y, then x dominates y in A, denoted by xD R A y; if y �a x, then x is dominated by y in 
A, denoted by yD R A x.

Definition 2.2. [7,8] Let (U , AT , V , f ) be an ordered information system, A ⊆ AT . D R A is defined to be the dominance 
relation with respect to A as

D R A = {(x, y) ∈ U × U | f (x,a) ≥ f (y,a),∀a ∈ A}.

∀x ∈ U , two important sets of object x are obtained in the following:

(1) A set of objects dominating x, called A-dominating set, D+
R A

(x) = {y ∈ U |yD R A x};

(2) A set of objects dominated by x, called A-dominated set, D−
R A

(x) = {y ∈ U |xD R A y}.

In an ordered information system with decision attribute set (U , AT ∪ d, V , f ), the decision attribute set d makes a 
partition of U into a finite number of classes Cl = {Clt , t ∈ T } and T = {1, 2, · · · , n}. Each x ∈ U belongs to one and only 
one decision class Clt . To each decision attribute value vdt , Clt = {x ∈ U | f (x, d) = vdt }. The decision classes from Cl are 
preference-ordered according to increasing order of class indices, that is, for all r, s ∈ T such that r > s, the objects from 
Clr are preferred to the objects from Cls . In other words, the classes Cl represent a comprehensive evaluation of the objects 
in U : the worst objects are in Cl1, the best objects are in Cln , and the other objects belong to the remaining classes Clr , 
according to an evaluation improving with the index r ∈ T .

Due to the preference order in the set of classes Cl, the sets to be approximated are not the particular classes but upward 
unions and downward unions of the classes, respectively.

Cl�t =
⋃

s≥t

Cls, Cl�t =
⋃

s≤t

Cls, t = 1,2, · · · ,n.

Definition 2.3. [7,8] Let (U , AT , V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n. The dominance-based 
rough set approach (DRSA) can be defined as
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• the lower and upper approximations of the upward union Cl�t are

R A(Cl�t ) = {x ∈ U : D+
R A

(x) ⊆ Cl�t };
R A(Cl�t ) = {x ∈ U : D−

R A
(x) ∩ Cl�t �= ∅},

• the lower and upper approximations of the downward union Cl�t are

R A(Cl�t ) = {x ∈ U : D−
R A

(x) ⊆ Cl�t };
R A(Cl�t ) = {x ∈ U : D+

R A
(x) ∩ Cl�t �= ∅}.

For t = 1, · · · , n, it is to verify that the upper approximations of Cl�t and Cl�t satisfy

R A(Cl�t ) = U − R A(U − Cl�t ), R A(Cl�t ) = U − R A(U − Cl�t ).

And the corresponding boundary regions of Cl�t and Cl�t are defined as

Bn(Cl�t ) = R A(Cl�t ) − R A(Cl�t ), Bn(Cl�t ) = R A(Cl�t ) − R A(Cl�t ).

The above definition of rough approximation is based on a strict application of the dominance principle. However, when 
defining non-ambiguous objects, it is reasonable to accept a limited proportion of negative examples, particularly for large 
data tables. Such an extended version of DRSA is called a variable consistency dominance-based rough set approach (VC-
DRSA) [13]. The rough approximations defined within DRSA are based on consistency in the sense of dominance principle. It 
requires that objects having not-worse evaluation with respect to a set of considered criteria than a referent object cannot 
be assigned to a worse class than the referent object. However, some inconsistencies may decrease the cardinality of lower 
approximations to such an extent that it is impossible to discover strong patterns in the data, particularly when datasets 
are large. Thus, a relaxation of the strict dominance principle is worthwhile. The relaxation introduced in this paper to the 
DRSA model admits some inconsistent objects to the lower approximations, the range of this relaxation is controlled by an 
index called consistency level.

3. Quantitative consistency level

In the real world, we may come across the decision tables where the better condition attribute values are, the better 
the decision value is. This is the case where the condition attribute value of the object is consistent with the evaluation of 
the decision attribute of this object. But sometimes there is a situation that the condition attribute value of one object x
is larger than that of another object y, but the evaluation of the decision attribute value of object x is worse than that of 
object y. This is the case when the condition attribute value of object is inconsistent with the evaluation of the decision 
attribute of that object. Then DRSA is proposed to deal with this inconsistency situation.

As we mentioned in the part of Introduction, the definition of lower and upper approximations in DRSA is too strict 
to deal with this inconsistency, and there is no fault-tolerance mechanism available. In fact, when the dataset is large, we 
could allow certain errors to exist. It is reasonable to introduce a certain degree of consistency threshold in the lower and 
upper approximations in DRSA. That is the reason why the VC-DRSA [13] was developed by Greco et al. In reference [13], 
authors introduced an indicator to define new lower and upper rough approximations, this indicator is actually the relative 
quantitative consistency level to be studied in this section.

When we consider introducing the consistency level into DRSA, we can construct the quantitative consistency level by 
the mentioned two kinds of quantification indexes, thus the relative and absolute quantitative consistency levels could be 
obtained.

Definition 3.1. For an attribute set A ⊆ AT , we say that x ∈ U belongs to Cl�t with no ambiguity at relative quantitative 
consistency level α ∈ (0, 1], if x ∈ Cl�t and at least α ∗ 100% of all objects y ∈ U dominating x with respect to A also belong 
to Cl�t , i.e.

|D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≥ α.

The level α is called consistency level because it controls the degree of consistency between objects qualified as belong-
ing to Cl�t without any ambiguity. In other words, if α < 1, then (1 − α) ∗ 100% of all objects y ∈ U dominating x with 
respect to A do not belong to Cl�t and thus contradict the inclusion of x in Cl�t .
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Similarly, for attribute set A we say that x ∈ U belongs to Cl�t with no ambiguity at relative quantitative consistency 
level α ∈ (0, 1], if x ∈ Cl�t and at least α ∗ 100% of all objects y ∈ U dominated x with respect to A also belong to Cl�t , i.e.

|D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≥ α.

Thus, for attribute set A, each object x ∈ U is either ambiguous or non-ambiguous at consistency level α with respect to 
the upward union Cl�t (t = 2, 3, ..., n) or with respect to the downward union Cl�t (t = 1, 2, ..., n − 1).

There are two kinds of absolute quantitative consistency levels, one is called internal absolute quantitative consistency 
level and the other is external absolute quantitative consistency level.

Definition 3.2. We say that x ∈ U belongs to Cl�t with no ambiguity at internal absolute quantitative consistency level 
k ∈ (0, |U |], if x ∈ Cl�t and the numbers of objects y ∈ U dominating x with respect to A inside Cl�t exceed k, i.e.

|D+
R A

(x) ∩ Cl�t | > k.

Similarly, x ∈ U belongs to Cl�t with no ambiguity at internal absolute quantitative consistency level k ∈ (0, |U |], if 
x ∈ Cl�t and the numbers of objects y ∈ U dominated x with respect to A inside Cl�t exceed k, i.e.

|D−
R A

(x) ∩ Cl�t | > k.

Definition 3.3. We say that x ∈ U belongs to Cl�t with no ambiguity at external absolute quantitative consistency level 
k ∈ (0, |U |], if Cl�t and the numbers of objects y ∈ U dominating x with respect to A outside Cl�t are at most k, i.e.

|D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k.

Similarly, x ∈ U belongs to Cl�t with no ambiguity at external absolute quantitative consistency level k ∈ (0, |U |], if Cl�t
and the numbers of objects y ∈ U dominated x with respect to A outside Cl�t are at most k, i.e.

|D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k.

Based on the above two different forms of consistency level (relative quantitative and absolute quantitative), we can 
present the corresponding two single-quantitative variable consistency dominance-based rough set approaches, which will 
be studied in the next section.

4. Single-quantitative variable consistency dominance-based rough set approaches

In this section, we respectively investigate two kinds of single-quantitative variable consistency dominance-based rough 
set approach (Sq-VC-DRSA) models, which are relative quantitative variable consistency dominance-based rough set ap-
proach (Rq-VC-DRSA) and absolute quantitative variable consistency dominance-based rough set approach (Aq-VC-DRSA). 
Let us first discuss the following Rq-VC-DRSA.

4.1. Rq-VC-DRSA

Definition 4.1. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n, and the relative quantitative 
consistency level α ∈ (0, 1], the relative quantitative variable consistency dominance-based rough lower approximation of 
the upward union Cl�t with respect to attribute set A is defined as a set of objects x ∈ Cl�t whose relative quantitative 
consistency level are not less than α, denoted as

R Aα
(Cl�t ) = {x ∈ Cl�t : |D+

R A
(x) ∩ Cl�t |

|D+
R A

(x)| ≥ α}.

By duality, the relative quantitative variable consistency dominance-based rough upper approximation of the upward union 
Cl�t can be defined as

R Aα(Cl�t ) = U − R A (U − Cl�t ).

α
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Similarly, the relative quantitative variable consistency dominance-based rough lower and upper approximations of the 
downward union Cl�t are

R Aα
(Cl�t ) = {x ∈ Cl�t : |D−

R A
(x) ∩ Cl�t |

|D−
R A

(x)| ≥ α};

R Aα(Cl�t ) = U − R Aα
(U − Cl�t ).

Theorem 4.1. The upper approximations of upward union Cl�t and downward union Cl�t in Rq-VC-DRSA have the following expres-
sions.

(1) R Aα(Cl�t ) = Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x)∩Cl�t |
|D−

R A
(x)| > 1 − α};

(2) R Aα(Cl�t ) = Cl�t ∪ {x ∈ Cl�t+1 : |D+
R A

(x)∩Cl�t |
|D+

R A
(x)| > 1 − α}.

Proof. (1) From Definition 4.1, we can derive the processes about the upper approximation of Cl�t in Rq-VC-DRSA as follows.

R Aα(Cl�t ) = U − R Aα
(U − Cl�t ) = U − R Aα

(Cl�t−1)

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t−1|
|D−

R A
(x)| ≥ α}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ (U − Cl�t )|
|D−

R A
(x)| ≥ α}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≤ 1 − α}

= Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| > 1 − α}.

(2) The processes about the upper approximation of Cl�t in Rq-VC-DRSA are derived as

R Aα(Cl�t ) = U − R Aα
(U − Cl�t ) = U − R Aα

(Cl�t+1)

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t+1|
|D+

R A
(x)| ≥ α}

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ (U − Cl�t )|
|D+

R A
(x)| ≥ α}

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≤ 1 − α}

= Cl�t ∪ {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| > 1 − α}.

Then the proof process of the above theorem is completed. �
Theorem 4.2. If α = 1, then the Rq-VC-DRSA is degenerated into DRSA. In other words, Rq-VC-DRSA is a directional expansion of the 
DRSA.

Proof. It is easy to verify the correctness of this theorem from Definition 4.1. �
All the objects belonging to Cl�t and Cl�t with some ambiguity at relative quantitative consistency level α ∈ (0, 1] con-

stitute the boundary regions of Cl�t and Cl�t .
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For x ∈ U , we can define the positive region, negative region and boundary region of Cl�t as

Posα(Cl�t ) = R Aα
(Cl�t ) = {x ∈ Cl�t : |D+

R A
(x) ∩ Cl�t |

|D+
R A

(x)| ≥ α};

Negα(Cl�t ) = U − R Aα(Cl�t ) = {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t−1|
|D−

R A
(x)| ≥ α};

Bnα(Cl�t ) = R Aα(Cl�t ) − R Aα
(Cl�t ).

The corresponding three-way decision rules for the upward union Cl�t can be obtained:

(P ) If x ∈ Cl�t and 
|D+

R A
(x)∩Cl

�
t |

|D+
R A

(x)| ≥ α, decide Posα(Cl�t );

(N) If x ∈ U − Cl�t and 
|D−

R A
(x)∩Cl�t−1|

|D−
R A

(x)| ≥ α, decide Negα(Cl�t );

(B) Otherwise, decide Bnα(Cl�t ).

For x ∈ U , the positive region, negative region and boundary region of Cl�t are defined as

Posα(Cl�t ) = R Aα
(Cl�t ) = {x ∈ Cl�t : |D−

R A
(x) ∩ Cl�t |

|D−
R A

(x)| ≥ α};

Negα(Cl�t ) = U − R Aα(Cl�t ) = {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t+1|
|D+

R A
(x)| ≥ α};

Bnα(Cl�t ) = R Aα(Cl�t ) − R Aα
(Cl�t ).

We can obtain the corresponding three-way decision rules for the downward union Cl�t :

(P ) If x ∈ Cl�t and 
|D−

R A
(x)∩Cl�t |

|D−
R A

(x)| ≥ α, decide Posα(Cl�t );

(N) If x ∈ U − Cl�t and 
|D+

R A
(x)∩Cl�t+1|

|D+
R A

(x)| ≥ α, decide Negα(Cl�t );

(B) Otherwise, decide Bnα(Cl�t ).

Theorem 4.3. ∀t ∈ T − {1} and ∀A ⊆ AT , Bnα(Cl�t ) = Bnα(Cl�t−1).

Proof. From the definition of the boundary region in Rq-VC-DRSA, we obtain that

Bnα(Cl�t ) = R Aα(Cl�t ) − R Aα
(Cl�t )

= R Aα(U − Cl�t−1) − R Aα
(U − Cl�t−1)

= U − R Aα
(Cl�t−1) − (U − R Aα(Cl�t−1))

= Bnα(Cl�t−1).

Then the proof is completed. �
Theorem 4.4. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t ≤ s ∈ {1, 2, · · · , n}, the lower and upper approxi-
mations in Rq-VC-DRSA satisfy the following properties.

(1) R Aα
(Cl�1 ) = R Aα(Cl�1 ) = U ; R Aα

(Cl�n ) = R Aα(Cl�n ) = U .

(2) R Aα
(Cl�n+1) = R Aα(Cl�n+1) = ∅; R Aα

(Cl�0 ) = R Aα(Cl�0 ) = ∅.

(3) R Aα
(Cl�t ) ⊆ Cl�t ⊆ R Aα(Cl�t ); R Aα

(Cl�t ) ⊆ Cl�t ⊆ R Aα(Cl�t ).

(4) R Aα
(Cl�t ) ⊇ R Aα

(Cl�s ), R Aα(Cl�t ) ⊇ R Aα(Cl�s ); R Aα
(Cl�t ) ⊆ R Aα

(Cl�s ), R Aα(Cl�t ) ⊆ R Aα(Cl�s ).

Proof. (1) As Cl� = Cl�n = U , it is easy to obtain R A (Cl�) = R Aα(Cl�) = U and R A (Cl�n ) = R Aα(Cl�n ) = U .
1 α 1 1 α
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(2) As Cl�n+1 = Cl�0 = ∅, so R Aα
(Cl�n+1) = R Aα(Cl�n+1) = ∅; R Aα

(Cl�0 ) = R Aα(Cl�0 ) = ∅.

(3) For Cl�t , from the Definition 4.1 and Theorem 4.1, we know that R Aα
(Cl�t ) = {x ∈ Cl�t : |D+

R A
(x)∩Cl�t |

|D+
R A

(x)| ≥ α} and 

R Aα(Cl�t ) = Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x)∩Cl�t |
|D−

R A
(x)| > 1 − α}, it is easy to see that ∀x ∈ R Aα

(Cl�t ), x ∈ Cl�t ; ∀x ∈ Cl�t , x ∈ R Aα(Cl�t ). 

The similar analysis for Cl�t .

(4) ∀x ∈ R Aα
(Cl�s ), x ∈ Cl�s and 

|D+
R A

(x)∩Cl�s |
|D+

R A
(x)| ≥ α. As t ≤ s, Cl�t ⊇ Cl�s , which means for x ∈ Cl�s , we have x ∈ Cl�t and 

|D+
R A

(x)∩Cl�t |
|D+

R A
(x)| ≥ α, then x ∈ R Aα

(Cl�t ). So R Aα
(Cl�t ) ⊇ R Aα

(Cl�s ) is obtained. ∀x ∈ R Aα
(Cl�t ), x ∈ Cl�t and 

|D−
R A

(x)∩Cl�t |
|D−

R A
(x)| ≥ α. 

As t ≤ s, Cl�t ⊆ Cl�s , which means, for x ∈ Cl�t , we have x ∈ Cl�s and 
|D−

R A
(x)∩Cl

�
s |

|D−
R A

(x)| ≥ α, then x ∈ R Aα
(Cl�s ). So R Aα

(Cl�t ) ⊆
R Aα

(Cl�s ).

From the Definition 4.1, R Aα(Cl�t ) = U − R Aα
(Cl�t−1) and R Aα(Cl�s ) = U − R Aα

(Cl�s−1). According to the above proof pro-

cess, R Aα
(Cl�t−1) ⊆ R Aα

(Cl�s−1), then R Aα(Cl�t ) ⊇ R Aα(Cl�s ). R Aα(Cl�t ) = U − R Aα
(Cl�t−1) and R Aα(Cl�s ) = U − R Aα

(Cl�s−1). 
R Aα

(Cl�t−1) ⊇ R Aα
(Cl�s−1), then R Aα(Cl�t ) ⊆ R Aα(Cl�s ).

Then the proof process of this theorem is completed. �
Introducing the same relative quantitative consistency level to each union in an ordered information system ignores the 

differences in size of unions to some extent. And the introduction of different relative quantitative consistency thresholds 
for each union (α�

t for Cl�t , and α�
t for Cl�t instead of one α for all unions) may solve the problem with different size of 

unions. However, for t ≤ s ∈ {1, 2, · · · , n}, α�
t �= α

�
s , α�

t−1 �= α
�
s−1, α�

t �= α
�
s and α�

t+1 �= α
�
s+1 generally hold with different 

relative quantitative consistency thresholds for each union. Then it is hard to compare the inclusion relationship between 
R Aα

(Cl�t ) and R Aα
(Cl�s ), R Aα

(Cl�t ) and R Aα
(Cl�s ), R Aα(Cl�t ) and R Aα(Cl�s ), R Aα(Cl�t ) and R Aα(Cl�s ), which can be shown 

in item (4) of Theorem 4.4. The same issue for the Aq-VC-DRSA and Dq-VC-RDSA to be studied in the Subsection 4.2 and 
Section 5.

After discussing Rq-VC-DRSA, we will investigate the Aq-VC-DRSA in the following subsection. Different from Rq-VC-
DRSA, the Aq-VC-DRSA uses absolute quantitative consistency level to define the corresponding rough approximations.

4.2. Aq-VC-DRSA

Given an absolute quantitative consistency level 0 < k ≤ |U |, the absolute quantitative variable consistency dominance-
based rough lower approximation of upward union Cl�t with respect to attribute set A is defined as a set of objects x ∈ Cl�t
whose external absolute quantitative consistency level are not more than k. Let us focus on the following Definition 4.2.

Definition 4.2. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n. Suppose k is a non-negative 
integer called “grade”. The absolute quantitative variable consistency dominance-based rough lower and upper approxima-
tions of the upward union Cl�t are

R Ak
(Cl�t ) = {x ∈ Cl�t : |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t | ≤ k};

R Ak(Cl�t ) = U − R Ak
(U − Cl�t ).

Similarly, the absolute quantitative variable consistency dominance-based rough lower and upper approximations of the 
downward union Cl�t are

R Ak
(Cl�t ) = {x ∈ Cl�t : |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t | ≤ k};

R Ak(Cl�t ) = U − R Ak
(U − Cl�t ).

Theorem 4.5. The upper approximations of upward union Cl�t and downward union Cl�t in Aq-VC-DRSA have the following expres-
sions.

(1) R Ak(Cl�t ) = Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t | > k};

(2) R Ak(Cl�t ) = Cl�t ∪ {x ∈ Cl� : |D+ (x) ∩ Cl�t | > k}.
t+1 R A
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Proof. (1) From Definition 4.2, we can derive the processes about the upper approximation of Cl�t in Aq-VC-DRSA as follows.

R Ak(Cl�t ) = U − R Ak
(U − Cl�t ) = U − R Ak

(Cl�t−1)

= U − {x ∈ Cl�t−1 : |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t−1| ≤ k}
= U − {x ∈ Cl�t−1 : |D−

R A
(x) − D−

R A
(x) ∩ Cl�t−1| ≤ k}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t | ≤ k}
= Cl�t ∪ {x ∈ Cl�t−1 : |D−

R A
(x) ∩ Cl�t | > k}

(2) The processes about the upper approximation of Cl�t in Aq-VC-DRSA are derived as

R Ak(Cl�t ) = U − R Ak
(U − Cl�t ) = U − R Ak

(Cl�t+1)

= U − {x ∈ Cl�t+1 : |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t+1| ≤ k}
= U − {x ∈ Cl�t+1 : |D+

R A
(x) − D+

R A
(x) ∩ Cl�t+1| ≤ k}

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t | ≤ k}
= Cl�t ∪ {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | > k}

Then the proof process of the above theorem is completed. �
Theorem 4.6. If k = 0, then the Aq-VC-DRSA is degenerated into DRSA. In other words, Aq-VC-DRSA is a directional expansion of the 
DRSA.

Proof. It is easy to verify the correctness of this theorem from Definition 4.2. �
All the objects belonging to Cl�t and Cl�t with some ambiguity at absolute quantitative consistency level k ∈ (0, |U |]

constitute the boundary regions of Cl�t and Cl�t .

For x ∈ U , we can define the positive region, negative region and boundary region of Cl�t as

Posk(Cl�t ) = R Ak
(Cl�t )

= {x ∈ Cl�t : |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k};
Negk(Cl�t ) = U − R Ak(Cl�t )

= {x ∈ Cl�t−1 : |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t−1| ≤ k};
Bnk(Cl�t ) = R Ak(Cl�t ) − R Ak

(Cl�t ).

The corresponding three-way decision rules for the upward union Cl�t can be obtained:

(P ) If x ∈ Cl�t and |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k, decide Posk(Cl�t );

(N) If x ∈ U − Cl�t and |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t−1| ≤ k, decide Negk(Cl�t );

(B) Otherwise, decide Bnk(Cl�t ).

For x ∈ U , the positive region, negative region and boundary region of Cl�t are defined as

Posk(Cl�t ) = R Ak
(Cl�t )

= {x ∈ Cl�t : |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k};
Negk(Cl�t ) = U − R Ak(Cl�t )

= {x ∈ Cl�t+1 : |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t+1| ≤ k};
Bnk(Cl�t ) = R Ak(Cl�t ) − R Ak

(Cl�t ).

We can obtain the corresponding three-way decision rules for the downward union Cl�t :

(P ) If x ∈ Cl�t and |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k, decide Posk(Cl�t );

(N) If x ∈ U − Cl�t and |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t+1| ≤ k, decide Negk(Cl�t );

(B) Otherwise, decide Bnk(Cl�t ).
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Theorem 4.7. ∀t ∈ T − {1} and ∀A ⊆ AT , Bnk(Cl�t ) = Bnk(Cl�t−1).

Proof. From the definition of the boundary region in Aq-VC-DRSA, we can obtain that

Bnk(Cl�t ) = R Ak(Cl�t ) − R Ak
(Cl�t )

= R Ak(U − Cl�t−1) − R Ak
(U − Cl�t−1)

= U − R Ak
(Cl�t−1) − (U − R Ak(Cl�t−1))

= R Ak(Cl�t−1) − R Ak
(Cl�t−1)

= Bnk(Cl�t−1).

Then the proof is completed. �
Theorem 4.8. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n, the lower and upper approximations 
in Aq-VC-DRSA satisfy

(1) R Ak
(Cl�1 ) = R Ak(Cl�1 ) = U ; R Ak

(Cl�n ) = R Ak(Cl�n ) = U .

(2) R Ak
(Cl�n+1) = R Ak(Cl�n+1) = ∅; R Ak

(Cl�0 ) = R Ak(Cl�0 ) = ∅.

(3) R Ak
(Cl�t ) ⊆ Cl�t ⊆ R Ak(Cl�t ); R Ak

(Cl�t ) ⊆ Cl�t ⊆ R Ak(Cl�t ).

(4) R Ak
(Cl�t ) ⊇ R Ak

(Cl�s ), R Ak(Cl�t ) ⊇ R Ak(Cl�s ); R Ak
(Cl�t ) ⊆ R Ak

(Cl�s ), R Ak(Cl�t ) ⊆ R Ak(Cl�s ).

Proof. (1) As Cl�1 = Cl�n = U , it is easy to obtain R Ak
(Cl�1 ) = R Ak(Cl�1 ) = U and R Ak

(Cl�n ) = R Ak(Cl�n ) = U .

(2) As Cl�n+1 = Cl�0 = ∅, so R Ak
(Cl�n+1) = R Ak(Cl�n+1) = ∅; R Ak

(Cl�0 ) = R Ak(Cl�0 ) = ∅.

(3) For Cl�t , from the Definition 4.2 and Theorem 4.5, we know that R Ak
(Cl�t ) = {x ∈ Cl�t : |D+

R A
(x)| −|D+

R A
(x) ∩ Cl�t | ≤ k}

and R Ak(Cl�t ) = Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t | > k}, it is easy to see that ∀x ∈ R Ak
(Cl�t ), x ∈ Cl�t ; ∀x ∈ Cl�t , x ∈ R Ak(Cl�t ). 

The similar analysis for Cl�t .

(4) ∀x ∈ R Ak
(Cl�s ), x ∈ Cl�s and |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�s | ≤ k. As t ≤ s, Cl�t ⊇ Cl�s , which means for x ∈ Cl�s , we have 

x ∈ Cl�t and |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k, then x ∈ R Ak
(Cl�t ). So R Ak

(Cl�t ) ⊇ R Ak
(Cl�s ) is obtained. ∀x ∈ R Ak

(Cl�t ), x ∈ Cl�t
and |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t | ≤ k. As t ≤ s, Cl�t ⊆ Cl�s , which means for x ∈ Cl�t , we have x ∈ Cl�s and |D−

R A
(x)| − |D−

R A
(x) ∩

Cl�s | ≤ k, then x ∈ R Aα
(Cl�s ). So R Ak

(Cl�t ) ⊆ R Ak
(Cl�s ).

From the Definition 4.2, R Ak(Cl�t ) = U − R Ak
(Cl�t−1) and R Ak(Cl�s ) = U − R Ak

(Cl�s−1). According to the above proof 
process, R Ak

(Cl�t−1) ⊆ R Ak
(Cl�s−1), then R Ak(Cl�t ) ⊇ R Ak(Cl�s ). R Ak(Cl�t ) = U − R Ak

(Cl�t−1) and R Ak(Cl�s ) = U − R Ak
(Cl�s−1). 

R Ak
(Cl�t−1) ⊇ R Ak

(Cl�s−1), then R Ak(Cl�t ) ⊆ R Ak(Cl�s ).
Then the proof process of this theorem is completed. �
The Rq-VC-DRSA utilizes relative quantitative consistency measure to calculate the approximations, there is no infor-

mation regarding the absolute quantitative consistency level in Rq-VC-DRSA; The Aq-VC-DRSA utilizes absolute quantitative 
consistency measure to obtain the approximations, there is no information regarding the relative quantitative consistency 
level in Aq-VC-DRSA. Relative and absolute quantitative information are two kinds of quantification methodology in cer-
tain applications. Let us take the dominating set D+

R A
(x) and the upward union Cl�t for example. For two dominating 

sets |D+
R A

(x1)| �= |D+
R A

(x2)|, if 
|D+

R A
(x1)∩Cl�t |

|D+
R A

(x1)| = |D+
R A

(x2)∩Cl�t |
|D+

R A
(x2)| , then x1 and x2 are indiscernible or equal in Rq-VC-DRSA. How-

ever, |D+
R A

(x1)| �= |D+
R A

(x2)| or |D+
R A

(x1) ∩ Cl�t | �= |D+
R A

(x2) ∩ Cl�t |, and x1 and x2 can be discerned by introducing the 
absolute quantitative information |D+

R A
(x)| or |D+

R A
(x) ∩ Cl�t |. The double quantification formed by adding the absolute 

quantitative information can improve the descriptive abilities of Rq-VC-DRSA and expand the range of applicability. The 
same analysis for adding relative quantitative information to Aq-VC-DRSA. For two dominating sets |D+

R A
(x1)| �= |D+

R A
(x2)|, 

if |D+
R A

(x1)| − |D+
R A

(x1) ∩ Cl�t | = |D+
R A

(x2)| − |D+
R A

(x2) ∩ Cl�t |, then x1 and x2 are indiscernible or equal in Aq-VC-DRSA. 

However, their relative quantitative information may satisfy 
|D+

R A
(x1)∩Cl�t |

|D+
R A

(x1)| �= |D+
R A

(x2)∩Cl�t |
|D+

R A
(x2)| , in this case, x1 and x2 can be 

discerned by introducing the relative quantitative information 
|D+

R A
(x)∩Cl�t |

|D+
R A

(x)| . Thus, it is necessary to implement the double 

quantification using the relative and absolute quantitative consistency levels simultaneously in the DRSA.
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5. Double-quantitative variable consistency dominance-based rough set approaches

In the previous section, we present the single-quantitative dominance-based rough approximations based on two dif-
ferent types of quantitative consistency thresholds. In what follows, we investigate two kinds of Dq-VC-DRSA (double-
quantitative variable consistency dominance-based rough set approach) models. These two models have their own specific 
application background, and we should decide which model to use according to the actual application requirements. Let us 
start with the first kind of Dq-VC-DRSA, denoted as DqI-VC-DRSA.

5.1. DqI-VC-DRSA

If the lower approximation must contain two kinds of quantitative consistency levels, then the DqI-VC-DRSA in the 
following Definition 5.1 can be applied.

Definition 5.1. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n. The DqI-VC-DRSA can be 
defined as follows.

• The first kind of double-quantitative variable consistency dominance-based rough approximations of the upward union 
Cl�t are defined as

R A
I
(α,k)

(Cl�t ) ={x ∈ Cl�t : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≥ α

∧ |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k};
R A

I
(α,k)(Cl�t ) =U − R A

I
(α,k)

(U − Cl�t ).

• The first kind of double-quantitative variable consistency dominance-based rough approximations of the downward 
union Cl�t are

R A
I
(α,k)

(Cl�t ) ={x ∈ Cl�t : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≥ α

∧ |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k};
R A

I
(α,k)(Cl�t ) =U − R A

I
(α,k)

(U − Cl�t ).

Theorem 5.1. The upper approximations of upward union Cl�t and downward union Cl�t in DqI-VC-DRSA have the following expres-
sions.

(1) R A
I
(α,k)(Cl�t ) = Cl�t ∪ {x ∈ Cl�t−1 : |D−

R A
(x)∩Cl�t |

|D−
R A

(x)| > 1 − α ∨ |D−
R A

(x) ∩ Cl�t | > k};

(2) R A
I
(α,k)(Cl�t ) = Cl�t ∪ {x ∈ Cl�t+1 : |D+

R A
(x)∩Cl�t |

|D+
R A

(x)| > 1 − α ∨ |D+
R A

(x) ∩ Cl�t | > k}.

Proof. (1) From Definition 5.1, we can derive the processes about the upper approximation of Cl�t in DqI-VC-DRSA as 
follows.

R A
I
(α,k)(Cl�t ) = U − R A

I
(α,k)

(U − Cl�t ) = U − R A
I
(α,k)

(Cl�t−1)

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t−1|
|D−

R A
(x)| ≥ α ∧ |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t−1| ≤ k}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≤ 1 − α ∧ |D−

R A
(x) − D−

R A
(x) ∩ Cl�t−1| ≤ k}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≤ 1 − α} ∩ {x ∈ Cl�t−1 : |D−

R A
(x) − D−

R A
(x) ∩ Cl�t−1| ≤ k}

= (U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D− (x)| ≤ 1 − α}) ∪ (U − {x ∈ Cl�t−1 : |D−

R A
(x) ∩ Cl�t | ≤ k})
R A
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= (Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| > 1 − α}) ∪ (Cl�t ∪ {x ∈ Cl�t−1 : |D−

R A
(x) ∩ Cl�t | > k})

= Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| > 1 − α ∨ |D−

R A
(x) ∩ Cl�t | > k}

(2) The processes about the upper approximation of Cl�t in DqI-VC-DRSA are derived as

R A
I
(α,k)(Cl�t ) = U − R A

I
(α,k)

(U − Cl�t ) = U − R A
I
(α,k)

(Cl�t+1)

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t+1|
|D+

R A
(x)| ≥ α ∧ |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t+1| ≤ k}

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ (U − Cl�t )|
|D+

R A
(x)| ≥ α ∧ |D+

R A
(x) − D+

R A
(x) ∩ Cl�t+1| ≤ k}

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≤ 1 − α} ∩ {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | ≤ k}

= (U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≤ 1 − α}) ∪ (U − {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | ≤ k})

= (Cl�t ∪ {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| > 1 − α}) ∪ (Cl�t ∪ {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | > k})

= Cl�t ∪ {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| > 1 − α ∨ |D+

R A
(x) ∩ Cl�t | > k}

Then the proof process of the above theorem is completed. �
From Definition 5.1 and Theorem 5.1, it is easy to see that R A

I
(α,k)

(Cl�t ) ⊆ Cl�t ⊆ R A
I
(α,k)(Cl�t ) and R A

I
(α,k)

(Cl�t ) ⊆ Cl�t ⊆
R A

I
(α,k)(Cl�t ).

Proposition 5.1. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n, the following properties hold.

(1) R A
I
(α,k)

(Cl�t ) = R Aα
(Cl�t ) ∩ R Ak

(Cl�t ),

(2) R A
I
(α,k)(Cl�t ) = R Aα(Cl�t ) ∪ R Ak(Cl�t );

(3) R A
I
(α,k)

(Cl�t ) = R Aα
(Cl�t ) ∩ R Ak

(Cl�t ),

(4) R A
I
(α,k)(Cl�t ) = R Aα(Cl�t ) ∪ R Ak(Cl�t ).

Proof. It can be proved directly from Theorem 5.1. �
All the objects belonging to Cl�t and Cl�t with some ambiguity at double-quantitative consistency level α ∈ (0, 1] and 

k ∈ (0, |U |] constitute the boundary regions of Cl�t and Cl�t .

For x ∈ U , we can define the positive region, negative region and boundary region of Cl�t as

PosI
(α,k)(Cl�t ) = R A

I
(α,k)

(Cl�t )

= {x ∈ Cl�t : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≥ α ∧ |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t | ≤ k};

NegI
(α,k)(Cl�t ) = U − R A

I
(α,k)(Cl�t )

= {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t−1|
|D−

R A
(x)| ≥ α ∧ |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t−1| ≤ k};

BnI (Cl�) = R A
I
(α,k)(Cl�) − R A

I (Cl�).
(α,k) t t (α,k) t
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The corresponding three-way decision rules for the upward union Cl�t can be obtained:

(P ) If x ∈ Cl�t and 
|D+

R A
(x)∩Cl

�
t |

|D+
R A

(x)| ≥ α ∧ |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k, decide PosI
(α,k)

(Cl�t );

(N) If x ∈ U − Cl�t and 
|D−

R A
(x)∩Cl�t−1|

|D−
R A

(x)| ≥ α ∧ |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t−1| ≤ k, decide NegI
(α,k)

(Cl�t );

(B) Otherwise, decide BnI
(α,k)

(Cl�t ).

For x ∈ U , the positive region, negative region and boundary region of Cl�t are defined as

PosI
(α,k)(Cl�t ) = R A

I
(α,k)

(Cl�t )

= {x ∈ Cl�t : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≥ α ∧ |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t | ≤ k};

NegI
(α,k)(Cl�t ) = U − R A

I
(α,k)(Cl�t )

= {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t+1|
|D+

R A
(x)| ≥ α ∧ |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t+1| ≤ k};

BnI
(α,k)(Cl�t ) = R A

I
(α,k)(Cl�t ) − R A

I
(α,k)

(Cl�t ).

We can obtain the corresponding three-way decision rules for the downward union Cl�t :

(P ) If x ∈ Cl�t and 
|D−

R A
(x)∩Cl�t |

|D−
R A

(x)| ≥ α ∧ |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k, decide PosI
(α,k)

(Cl�t );

(N) If x ∈ U − Cl�t and 
|D+

R A
(x)∩Cl�t+1|

|D+
R A

(x)| ≥ α ∧ |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t+1| ≤ k, decide NegI
(α,k)

(Cl�t );

(B) Otherwise, decide BnI
(α,k)

(Cl�t ).

Theorem 5.2. ∀t ∈ T − {1} and ∀A ⊆ AT , BnI
(α,k)

(Cl�t ) = BnI
(α,k)

(Cl�t−1).

Proof. From the definition of the boundary region in DqI-VC-DRSA, we can obtain that

BnI
(α,k)(Cl�t ) = R Aα(Cl�t ) − R A

I
(α,k)

(Cl�t )

= R A
I
(α,k)(U − Cl�t−1) − R A

I
(α,k)

(U − Cl�t−1)

= U − R A
I
(α,k)

(Cl�t−1) − (U − R A
I
(α,k)(Cl�t−1))

= R A
I
(α,k)(Cl�t−1) − R A

I
(α,k)

(Cl�t−1)

= BnI
(α,k)(Cl�t−1).

Then the proof is completed. �
In DqI-VC-DRSA, the conjunction operator is applied to reflect both the relative quantitative consistency level and abso-

lute quantitative consistency level in the lower approximation. Each element, in the lower approximation, exhibits relative 
quantification and absolute quantification at the same time with the conjunction operator. However, if the lower approxima-
tion contains at least one kind of quantitative consistency level, then the disjunction operator is applied to reflect relative 
quantitative consistency level or absolute quantitative consistency level. The second kind of Dq-VC-DRSA (denoted as DqII-
VC-DRSA) could be studied in the following subsection.

5.2. DqII-VC-DRSA

If the lower approximation contains at least one kind of quantitative consistency level, then the DqII-VC-DRSA in the 
following Definition 5.2 can be applied.

Definition 5.2. Let (U , AT ∪d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n. DqII-VC-DRSA can be defined 
as follows.
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• The second kind of double-quantitative variable consistency dominance-based rough approximations of the upward 
union Cl�t are

R A
I I
(α,k)

(Cl�t ) ={x ∈ Cl�t : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≥ α

∨ |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k};
R A

I I
(α,k)(Cl�t ) =U − R A

I I
(α,k)

(U − Cl�t ).

• The second kind of double-quantitative variable consistency dominance-based rough approximations of the downward 
union Cl�t are

R A
I I
(α,k)

(Cl�t ) ={x ∈ Cl�t : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≥ α

∨ |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k};
R A

I I
(α,k)(Cl�t ) =U − R A

I I
(α,k)

(U − Cl�t ).

Theorem 5.3. The upper approximations of upward union Cl�t and downward union Cl�t in DqII-VC-DRSA have the following expres-
sions.

(1) R A
I I
(α,k)(Cl�t ) = Cl�t ∪ {x ∈ Cl�t−1 : |D−

R A
(x)∩Cl�t |

|D−
R A

(x)| > 1 − α ∧ |D−
R A

(x) ∩ Cl�t | > k};

(2) R A
I I
(α,k)(Cl�t ) = Cl�t ∪ {x ∈ Cl�t+1 : |D+

R A
(x)∩Cl�t |

|D+
R A

(x)| > 1 − α ∧ |D+
R A

(x) ∩ Cl�t | > k}.

Proof. (1) From Definition 5.2, the processes about the upper approximation of Cl�t in DqII-VC-DRSA are

R A
I I
(α,k)(Cl�t ) = U − R A

I I
(α,k)

(U − Cl�t ) = U − R A
I I
(α,k)

(Cl�t−1)

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t−1|
|D−

R A
(x)| ≥ α ∨ |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t−1| ≤ k}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≤ 1 − α ∨ |D−

R A
(x) − D−

R A
(x) ∩ Cl�t−1| ≤ k}

= U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≤ 1 − α} ∪ {x ∈ Cl�t−1 : |D−

R A
(x) ∩ Cl�t | ≤ k}

= (U − {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≤ 1 − α}) ∩ (U − {x ∈ Cl�t−1 : |D−

R A
(x) ∩ Cl�t | ≤ k})

= (Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| > 1 − α}) ∩ (Cl�t ∪ {x ∈ Cl�t−1 : |D−

R A
(x) ∩ Cl�t | > k})

= Cl�t ∪ {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| > 1 − α ∧ |D−

R A
(x) ∩ Cl�t | > k}

(2) The processes about the upper approximation of Cl�t in DqII-VC-DRSA are derived as

R A
I I
(α,k)(Cl�t ) = U − R A

I I
(α,k)

(U − Cl�t ) = U − R A
I I
(α,k)

(Cl�t+1)

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t+1|
|D+ (x)| ≥ α ∨ |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t+1| ≤ k}
R A
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= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ (U − Cl�t )|
|D+

R A
(x)| ≥ α ∨ |D+

R A
(x) − D+

R A
(x) ∩ Cl�t+1| ≤ k}

= U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≤ 1 − α} ∪ {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | ≤ k}

= (U − {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≤ 1 − α}) ∩ (U − {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | ≤ k})

= (Cl�t ∪ {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| > 1 − α}) ∩ (Cl�t ∪ {x ∈ Cl�t+1 : |D+

R A
(x) ∩ Cl�t | > k})

= Cl�t ∪ {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| > 1 − α ∧ |D+

R A
(x) ∩ Cl�t | > k}

Then the proof process of the above theorem is completed. �
From the Definition 5.2 and Theorem 5.3, it is easy to see that R A

I I
(α,k)

(Cl�t ) ⊆ Cl�t ⊆ R A
I I
(α,k)(Cl�t ) and R A

I I
(α,k)

(Cl�t ) ⊆
Cl�t ⊆ R A

I I
(α,k)(Cl�t ).

Proposition 5.2. Let (U , AT ∪ d, V , f ) be an ordered information system, A ⊆ AT , t = 1, 2, · · · , n, the following properties hold.

(1) R A
I I
(α,k)

(Cl�t ) = R Aα
(Cl�t ) ∪ R Ak

(Cl�t ),

(2) R A
I I
(α,k)(Cl�t ) = R Aα(Cl�t ) ∩ R Ak(Cl�t );

(3) R A
I I
(α,k)

(Cl�t ) = R Aα
(Cl�t ) ∪ R Ak

(Cl�t ),

(4) R A
I I
(α,k)(Cl�t ) = R Aα(Cl�t ) ∩ R Ak(Cl�t ).

Proof. It can be proved directly from Theorem 5.3. �
All the objects belonging to Cl�t and Cl�t with some ambiguity at double-quantitative consistency level α ∈ (0, 1] and 

k ∈ (0, |U |] constitute the boundary regions of Cl�t and Cl�t .

For x ∈ U , we can define the positive region, negative region and boundary region of Cl�t as

PosI I
(α,k)(Cl�t ) = R A

I I
(α,k)

(Cl�t )

= {x ∈ Cl�t : |D+
R A

(x) ∩ Cl�t |
|D+

R A
(x)| ≥ α ∨ |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t | ≤ k};

NegI I
(α,k)(Cl�t ) = U − R A

I I
(α,k)(Cl�t )

= {x ∈ Cl�t−1 : |D−
R A

(x) ∩ Cl�t−1|
|D−

R A
(x)| ≥ α ∨ |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t−1| ≤ k};

BnI I
(α,k)(Cl�t ) = R A

I I
(α,k)(Cl�t ) − R A

I
(α,k)

(Cl�t ).

The corresponding three-way decision rules for the upward union Cl�t can be obtained:

(P ) If x ∈ Cl�t and 
|D+

R A
(x)∩Cl�t |

|D+
R A

(x)| ≥ α ∨ |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t | ≤ k, decide PosI I
(α,k)

(Cl�t );

(N) If x ∈ U − Cl�t and 
|D−

R A
(x)∩Cl�t−1|

|D−
R A

(x)| ≥ α ∨ |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t−1| ≤ k, decide NegI I
(α,k)

(Cl�t );

(B) Otherwise, decide BnI I (Cl�t ).

(α,k)
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Table 5.1
An ordered information system.

U a1 a2 d

x1 3 3 3
x2 2 2 3
x3 1 3 3
x4 3 1 2
x5 4 4 1

For x ∈ U , the positive region, negative region and boundary region of Cl�t are defined as

PosI I
(α,k)(Cl�t ) = R A

I I
(α,k)

(Cl�t )

= {x ∈ Cl�t : |D−
R A

(x) ∩ Cl�t |
|D−

R A
(x)| ≥ α ∨ |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t | ≤ k};

NegI I
(α,k)(Cl�t ) = U − R A

I I
(α,k)(Cl�t )

= {x ∈ Cl�t+1 : |D+
R A

(x) ∩ Cl�t+1|
|D+

R A
(x)| ≥ α ∨ |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t+1| ≤ k};

BnI I
(α,k)(Cl�t ) = R A

I I
(α,k)(Cl�t ) − R A

I I
(α,k)

(Cl�t ).

We can obtain the corresponding three-way decision rules for the downward union Cl�t :

(P ) If x ∈ Cl�t and 
|D−

R A
(x)∩Cl�t |

|D−
R A

(x)| ≥ α ∨ |D−
R A

(x)| − |D−
R A

(x) ∩ Cl�t | ≤ k, decide PosI I
(α,k)

(Cl�t );

(N) If x ∈ U − Cl�t and 
|D+

R A
(x)∩Cl�t+1|

|D+
R A

(x)| ≥ α ∨ |D+
R A

(x)| − |D+
R A

(x) ∩ Cl�t+1| ≤ k, decide NegI I
(α,k)

(Cl�t );

(B) Otherwise, decide BnI I
(α,k)

(Cl�t ).

Theorem 5.4. ∀t ∈ T − {1} and ∀A ⊆ AT , BnI I
(α,k)

(Cl�t ) = BnI I
(α,k)

(Cl�t−1).

Proof. From the definition of the boundary region in DqII-VC-DRSA, we can obtain that

BnI I
(α,k)(Cl�t ) = R A

I I
(α,k)(Cl�t ) − R A

I I
(α,k)

(Cl�t )

= R A
I I
(α,k)(U − Cl�t−1) − R A

I I
(α,k)

(U − Cl�t−1)

= U − R A
I I
(α,k)

(Cl�t−1) − (U − R A
I I
(α,k)(Cl�t−1))

= R A
I I
(α,k)(Cl�t−1) − R A

I I
(α,k)

(Cl�t−1)

= BnI I
(α,k)(Cl�t−1).

Then the proof is completed. �
In the reference [1], authors addressed basic significant monotonicity properties related to DRSA, which are (m1) mono-

tonicity with respect to the set of attributes; (m2) monotonicity with respect to the set of objects; (m3) monotonicity with 
respect to the union of ordered classes; (m4) monotonicity with respect to the dominance classes.

It has been shown that these properties exhibit important influence on the rule induction for variable consistency rough 
set approaches [2]. For this reason, it is necessary to verify whether the monotonicity properties mentioned are applicable 
to single-quantitative and double-quantitative variable consistency dominance-based rough approximations in this paper.

In the Sq-VC-DRSA models, both relative and absolute quantitative consistency levels of Cl�t (or Cl�t ) have properties 
(m2) and (m3), which can be proved from the item (4) of Theorem 4.4 and Theorem 4.8, respectively. Unfortunately, they 
have neither property (m1) or (m4). We explain it by the ordered information system (see Table 5.1) considered in the 
literature [1]. For the sake of simple expression, we use r

A j

Cl
�
t

(xi) to denote the relative quantitative consistency measure 

|D+
R A j

(xi) ∩Cl�t |/|D+
R A j

(xi)|, and use aA j

Cl�t
(xi) to denote the absolute quantitative consistency measure |D+

R A j
(xi)| −|D+

R A j
(xi) ∩

Cl�t |. Let us consider Cl� = {x1, x2, x3}, the attribute sets A1 = {a1}, A2 = {a2} A3 = {a1, a2}, it is easy to see that A1, A2 ⊆
3



W. Li et al. / International Journal of Approximate Reasoning 124 (2020) 1–26 17
A3. For the Rq-VC-DRSA, we calculate that r A2

Cl�3
(x2) = 3/4, while r A3

Cl�3
(x2) = 2/3. Since r A2

Cl�3
(x2) > r A3

Cl�3
(x2), the relative 

quantitative consistency measure does not satisfy the property (m1). In addition, from x1 ∈ D+
R A3

(x2) and r A3

Cl�3
(x1) = 1/2 <

r A3

Cl�3
(x2) = 2/3, we obtain that the relative quantitative consistency measure does not satisfy the property (m4). For the 

Aq-VC-DRSA, aA1

Cl�3
(x1) = 2, while aA3

Cl�3
(x1) = 1, the absolute quantitative consistency measure does not satisfy the property 

(m1). In addition, x5 ∈ D+
R A3

(x1) and aA3

Cl�3
(x5) = 0 < aA3

Cl�3
(x1) = 2, so the absolute quantitative consistency measure does not 

satisfy the property (m4).
As to the Dq-VC-DRSA models, according to Proposition 5.1 and Proposition 5.2 about the relationship between double-

quantitative and single-quantitative consistency rough approximations, it can be verified that the double-quantitative 
consistency measures used in the models have the properties (m2) and (m3), but do not hold the properties (m1) and 
(m4).

6. Comparison and analysis

There are many partial ordered decision-making problems about evaluation in real life. In the reference [13], authors used 
an example about customer satisfaction with airline services to explain the VC-DRSA. Inspired by reference [13], here we 
assume that an airline has also conducted a questionnaire on the service quality for its customers in order to evaluate the 
company’s services and then update the equipment. According to Dq-VC-DRSA models, we can make more comprehensive 
evaluations in the actual decision-making processes.

Table 6.1 is an ordered information system about the questionnaire diffused by the assumed airline. The table contains 20 
objects (customers’ feedbacks) described by U = {x1, x2, · · · , x20} of criteria corresponding to the considered three aspects 
of the aircraft comfort: space for seat width (SW), hand luggage (HL), and leg room (LR). There is also an item about an 
overall evaluation d. One uses 1, 2, 3 to denote the customer’s satisfaction values of the three aspects SW, HL, LR and the 
overall evaluation d, where the numbers 1, 2, 3 are respectively for Bad, Medium, Good.

The overall evaluation d creates three decision classes, which are preference ordered according to increasing class num-
ber, i.e. Cl1 = Bad, Cl2 = Medium, Cl3 = Good. The decision classes are shown as follows.

Cl1 = {x2, x4, x6, x10, x11, x17, x18, x19};
Cl2 = {x1, x3, x5, x7, x12, x13, x14, x15};
Cl3 = {x8, x9, x16, x20}.

As the above decision classes are ordered, the following downward and upward unions of decision classes are to be 
considered.

(1) At most bad: Cl�1 = {x2, x4, x6, x10, x11, x17, x18, x19}.

(2) At most medium: Cl�2 = {x1, x2, x3, x4, x5, x6, x7, x10, x11, x12, x13, x14, x15, x17, x18, x19}.

(3) At least medium: Cl�2 = {x1, x3, x5, x7, x8, x9, x12, x13, x14, x15, x16, x20}.

(4) At least good: Cl�3 = {x8, x9, x16, x20}.
From the data described in Table 6.1, we obtain all inconsistencies in the downward union and upward union of decision 

classes. The inconsistency situation for the data described in Table 6.1 can be shown in Table 6.2. There are many possible 
reasons for customers about these inconsistencies in the evaluation of airline comfort, such as

(1) Different customers have different heights, weights and other physical indicators, which leads to different feelings about 
the space on the aircraft;

(2) Different customers have different boundaries between good and bad;

Table 6.1
Statistical results.

U SW HL LR d U SW HL LR d

x1 1 3 2 2 x11 3 2 2 1
x2 3 3 1 1 x12 1 2 3 2
x3 1 3 2 2 x13 3 2 2 2
x4 3 1 3 1 x14 2 3 1 2
x5 2 3 1 2 x15 3 2 1 2
x6 3 3 1 1 x16 1 2 2 3
x7 1 3 3 2 x17 3 3 1 1
x8 1 3 3 3 x18 3 1 2 1
x9 3 2 1 3 x19 2 2 3 1
x10 2 2 2 1 x20 3 2 1 3
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Table 6.2
Inconsistency description.

D+
R A

(x) Inconsistency situation D−
R A

(x) Inconsistency situation

x1 ∈ Cl2 x1,3,7,8 x1,3,16 x16 ∈ Cl�3
x2 ∈ Cl1 x2,6,17 x2,5,6,9,14,15,17,20 x5,9,14,15,20 ∈ Cl�2
x3 ∈ Cl2 x1,3,7,8 x1,3,16 x16 ∈ Cl�3
x4 ∈ Cl1 x4 x4,18

x5 ∈ Cl2 x2,5,6,14,17 x2,6,17 ∈ Cl�1 x5,14

x6 ∈ Cl1 x2,6,17 x2,5,6,9,14,15,17,20 x5,9,14,15,20 ∈ Cl�2
x7 ∈ Cl2 x7,8 x1,3,7,8,12,16 x8,16 ∈ Cl�3
x8 ∈ Cl3 x7,8 x1,3,7,8,12,16

x9 ∈ Cl3 x2,6,9,11,13,15,17,20 x2,6,11,15,17 ∈ Cl�2 x9,15,20

x10 ∈ Cl1 x10,11,13,19 x10,16 x16 ∈ Cl�3
x11 ∈ Cl1 x11,13 x9,10,11,13,15,16,18,20 x9,13,15,16,20 ∈ Cl�2
x12 ∈ Cl2 x7,8,12,19 x19 ∈ Cl�1 x12,16 x16 ∈ Cl�3
x13 ∈ Cl2 x11,13 x9,10,11,13,15,16,18,20 x9,16,20 ∈ Cl�3
x14 ∈ Cl2 x2,5,6,14,17 x5,14

x15 ∈ Cl2 x2,6,9,11,13,15,17,20 x9,15,20

x16 ∈ Cl3 x1,3,7,8,10,11,12,13,16,19 x1,3,7,10,11,12,13,19 ∈ Cl�2 x16

x17 ∈ Cl1 x2,6,17 x2,5,6,9,14,15,17,20 x5,9,14,15,20 ∈ Cl�2
x18 ∈ Cl1 x4,11,13,18 x18

x19 ∈ Cl1 x19 x10,12,16,19 x12,16 ∈ Cl�2
x20 ∈ Cl3 x2,6,9,11,13,15,17,20 x9,15,20

(3) Different customers have different expectations for the airline;
(4) Errors in the recording of data, and others.

Let us take the object x12 ∈ Cl2 for example: (1) D+
R A

(x12) = {x7, x8, x12, x19}, which means x12 is dominated by x7, x8, 
x12 and x19. It is easy to see that x19 ∈ Cl�1 , while x12 is assigned to the decision class Cl2 better than Cl�1 . (2) D−

R A
(x12) =

{x12, x16}, which means x12 dominates x12 and x16. It is easy to see that x16 ∈ Cl�3 , while x12 is assigned to the decision class 
Cl2 worse than Cl�3 . This means that x12 gave an evaluation for all the considered aspects not worse than the evaluation 
given by x16, while x12 gave an overall evaluation of the aircraft comfort worse than the overall evaluation of x16; x12 gave 
an evaluation for all the considered aspects worse than the evaluation given by x19, while gave an overall evaluation of the 
aircraft comfort not worse than the overall evaluation of x19.

Next we will analyze which customers’ overall evaluation is consistent with their scores on the three considered in-
dicators, which customers’ overall evaluation is totally inconsistent with their scores of the three indicators, and which 
customers’ overall evaluation cannot be determined whether they are consistent with their scores of three indicators based 
on the scores they provided. Then computing the proposed Sq-VC-DRSA and Dq-VC-DRSA is natural. Suppose the relative 
quantitative consistency level α = 0.7 and the absolute quantitative consistency level k = 2.

In order to facilitate the comparisons, we first calculate the lower and upper approximations of Cl�1 in DRSA as

R A(Cl�1 ) ={x4, x18};
R A(Cl�1 ) ={x2, x4, x5, x6, x9, x10, x11, x12,

x13, x14, x15, x16, x17, x18, x19, x20}.

The lower and upper approximations of Cl�2 in DRSA are

R A(Cl�2 ) = {x4, x5, x14, x18};
R A(Cl�2 ) = U .

The lower and upper approximations of Cl�2 in DRSA are

R A(Cl�2 ) ={x1, x3, x7, x8};
R A(Cl�2 ) ={x1, x2, x3, x5, x6, x7, x8, x9, x10,

x , x , x , x , x , x , x , x , x }.
11 12 13 14 15 16 17 19 20
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The lower and upper approximations of Cl�3 in DRSA are

R A(Cl�3 ) =∅;
R A(Cl�3 ) ={x1, x2, x3, x6, x7, x8, x9, x10,

x11, x12, x13, x15, x16, x17, x19, x20}.
With the DRSA, elements belonging to the positive region mean that the dominating set (dominated set) of these objects 

is consistent to the upward union (or downward union); elements belonging to the negative region mean that the domi-
nating set (dominated set) of these objects is totally inconsistent with the upward union (or downward union); elements 
belonging to the boundary region mean that the dominating set (dominated set) of these objects cannot be judged whether 
the dominating set (dominated set) is consistent with the upward union (or downward union). However, for the DRSA, the 
conditions imposed on the relationship between dominating set (dominated set) and upward union (downward union) are 
so strict that there are no fault tolerance mechanisms. Quantitative information about the degree of overlap of the domi-
nating set (dominated set) and upward union (downward union) is not taken into consideration. In fact, we could allow a 
certain degree of inconsistencies to exist in real-life applications. Just as presented in Section 3, two kinds of quantitative 
consistency levels could be obtained from the two kinds of quantitative information, namely relative quantitative level and 
absolute quantitative level. In the following, we will discuss the three-way decision regions in Sq-VC-DRSA models and Dq-
VC-DRSA models. Table 6.3 and Table 6.4 are about the statistical results of upward union Cl�t and downward union Cl�t
(t = 1, 2, 3), respectively.

Based on the data stated in Table 6.3 and Table 6.4, we calculate the lower and upper approximations in Rq-VC-DRSA as 
follows.

The lower and upper approximations of downward union Cl�1 in Rq-VC-DRSA are

R Aα
(Cl�1 ) ={x4, x18};

R Aα(Cl�1 ) ={x2, x4, x5, x6, x9, x10, x11,

x13, x14, x15, x17, x18, x19, x20}.

The lower and upper approximations of downward union Cl�2 in Rq-VC-DRSA are

R Aα
(Cl�2 ) ={x2, x4, x5, x6, x14, x17, x18, x19};

R Aα(Cl�2 ) ={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x15, x16, x17, x18, x19, x20}.

The lower and upper approximations of upward union Cl�2 in Rq-VC-DRSA are

R Aα
(Cl�2 ) ={x1, x3, x7, x8, x12, x16};

R Aα(Cl�2 ) ={x1, x2, x3, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x15, x16, x17, x19, x20}.

The lower and upper approximations of upward union Cl�3 in Rq-VC-DRSA are

R Aα
(Cl�3 ) =∅;

R Aα(Cl�3 ) ={x1, x3, x7, x8, x9, x10,

x11, x12, x13, x15, x16, x20}.
And the lower and upper approximations in Aq-VC-DRSA are calculated as follows.
The lower and upper approximations of downward union Cl�1 in Aq-VC-DRSA are

R Ak
(Cl�1 ) ={x4, x10, x18, x19};

R Ak(Cl�1 ) ={x2, x4, x5, x6, x9, x10, x11,

x , x , x , x , x , x , x }.
14 15 16 17 18 19 20
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|D−
R A

(x)∩Cl�t |
|D−

R A
(x)| |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t |

t = 2 t = 3 t = 2 t = 3

1 1/3 0 2
5/8 2/8 3 6
1 1/3 0 2
0 0 2 2
1 0 0 2
5/8 2/8 3 6
1 2/6 0 4
1 2/6 0 4
1 2/3 0 1
1/2 1/2 1 1
5/8 3/8 3 5
1 1/2 0 1
5/8 3/8 3 5
1 0 0 2
1 2/3 0 1
1 1 0 0
5/8 2/8 3 6
0 0 1 1
1/2 1/4 2 3
1 2/3 0 1
Table 6.3
Statistical results of upward union Cl�t .

U |D+
R A

(x)| |D+
R A

(x) ∩ Cl�t | |D+
R A

(x)∩Cl�t |
|D+

R A
(x)| |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t | |D−

R A
(x)| |D−

R A
(x) ∩ Cl�t |

t = 2 t = 3 t = 2 t = 3 t = 2 t = 3 t = 2 t = 3

x1 4 4 1 1 1/4 0 3 3 3 1
x2 3 0 0 0 0 3 3 8 5 2
x3 4 4 1 1 1/4 0 3 3 3 1
x4 1 0 0 0 0 1 1 2 0 0
x5 5 2 0 2/5 0 3 5 2 2 0
x6 3 0 0 0 0 3 3 8 5 2
x7 2 2 1 1 1/2 0 1 6 6 2
x8 2 2 1 1 1/2 0 1 6 6 2
x9 8 4 2 4/8 2/8 4 6 3 3 2
x10 4 1 0 1/4 0 3 4 2 1 1
x11 2 1 0 1/2 0 1 2 8 5 3
x12 4 3 1 3/4 1/4 1 3 2 2 1
x13 2 1 0 1/2 0 1 2 8 5 3
x14 5 2 0 2/5 0 3 5 2 2 0
x15 8 4 2 4/8 2/8 4 6 3 3 2
x16 10 7 2 7/10 2/10 3 8 1 1 1
x17 3 0 0 0 0 3 3 8 5 2
x18 4 1 0 1/4 0 3 4 1 0 0
x19 1 0 0 0 0 1 1 4 2 1
x20 8 4 2 4/8 2/8 4 6 3 3 2
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|D−
R A

(x)∩Cl�t |
|D−

R A
(x)| |D−

R A
(x)| − |D−

R A
(x) ∩ Cl�t |

t = 1 t = 2 t = 1 t = 2

0 2/3 3 1
3/8 6/8 5 2
0 2/3 3 1
1 1 0 0
0 1 2 0
3/8 6/8 5 2
0 4/6 6 2
0 4/6 6 2
0 1/3 3 2
1/2 1/2 1 1
3/8 5/8 5 3
0 1/2 2 1
3/8 5/8 5 3
0 1 2 0
0 1/3 3 2
0 0 1 1
3/8 6/8 5 2
1 1 0 0
2/4 3/4 2 1
0 1/3 3 2
Table 6.4
Statistical results of downward union Cl�t .

U |D+
R A

(x)| |D+
R A

(x) ∩ Cl�t | |D+
R A

(x)∩Cl�t |
|D+

R A
(x)| |D+

R A
(x)| − |D+

R A
(x) ∩ Cl�t | |D−

R A
(x)| |D−

R A
(x) ∩ Cl�t |

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

x1 4 0 3 0 3/4 4 1 3 0 2
x2 3 3 3 1 1 0 0 8 3 6
x3 4 0 3 0 3/4 4 1 3 0 2
x4 1 1 1 1 1 0 0 2 2 2
x5 5 3 5 3/5 1 2 0 2 0 2
x6 3 3 3 1 1 0 0 8 3 6
x7 2 0 1 0 1/2 2 1 6 0 4
x8 2 0 1 0 1/2 2 1 6 0 4
x9 8 4 6 4/8 6/8 4 2 3 0 1
x10 4 3 4 3/4 1 1 0 2 1 1
x11 2 1 2 1/2 1 1 0 8 3 5
x12 4 1 3 1/4 3/4 3 1 2 0 1
x13 2 1 2 1/2 1 1 0 8 3 5
x14 5 3 5 3/5 1 2 0 2 0 2
x15 8 4 6 4/8 6/8 4 2 3 0 1
x16 10 3 8 3/10 8/10 7 2 1 0 0
x17 3 3 3 1 1 0 0 8 3 6
x18 4 3 4 3/4 1 1 0 1 1 1
x19 1 1 1 1 1 0 0 4 2 3
x20 8 4 6 4/8 6/8 4 2 3 0 1
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The lower and upper approximations of downward union Cl�2 in Aq-VC-DRSA are

R Ak
(Cl�2 ) ={x1, x2, x3, x4, x5, x6, x7,

x10, x12, x14, x15, x17, x18, x19};
R Ak(Cl�2 ) ={x1, x2, x3, x4, x5, x6, x7, x9, x10, x11,

x12, x13, x14, x15, x16, x17, x18, x19, x20}.
The lower and upper approximations of upward union Cl�2 in Aq-VC-DRSA are

R Ak
(Cl�2 ) ={x1, x3, x7, x8, x12, x13};

R Ak(Cl�2 ) ={x1, x2, x3, x5, x6, x7, x8, x9,

x11, x12, x13, x14, x15, x16, x17, x20}.
The lower and upper approximations of upward union Cl�3 in Aq-VC-DRSA are

R Ak
(Cl�3 ) = {x8};

R Ak(Cl�3 ) = {x8, x9, x11, x13, x16, x20}.
The lower and upper approximations in DqI-VC-DRSA are calculated as follows.
The lower and upper approximations of downward union Cl�1 in DqI-VC-DRSA are

R A
I
(α,k)

(Cl�1 ) ={x4, x18};
R A

I
(α,k)(Cl�1 ) ={x2, x4, x5, x6, x9, x10, x11,

x13, x14, x15, x16, x17, x18, x19, x20}.
The lower and upper approximations of downward union Cl�2 in DqI-VC-DRSA are

R A
I
(α,k)

(Cl�2 ) ={x2, x4, x5, x6, x14, x17, x18, x19};
R A

I
(α,k)(Cl�2 ) ={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x15, x16, x17, x18, x19, x20}.
The lower and upper approximations of upward union Cl�2 in DqI-VC-DRSA are

R A
I
(α,k)

(Cl�2 ) ={x1, x3, x7, x8, x12};
R A

I
(α,k)(Cl�2 ) ={x1, x2, x3, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x15, x16, x17, x19, x20}.
The lower and upper approximations of upward union Cl�3 in DqI-VC-DRSA are

R A
I
(α,k)

(Cl�3 ) =∅;
R A

I
(α,k)(Cl�3 ) ={x1, x3, x7, x8, x9, x10,

x11, x12, x13, x15, x16, x20}.
The lower and upper approximations in DqII-VC-DRSA are calculated as follows.
The lower and upper approximations of downward union Cl�1 in DqII-VC-DRSA are

R A
I I
(α,k)

(Cl�1 ) ={x4, x10, x18, x19};
R A

I I
(α,k)(Cl�1 ) ={x2, x4, x5, x6, x9, x10,

x , x , x , x , x , x , x }.
11 14 15 17 18 19 20
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Table 6.5
Decision regions of downward union Cl�1 in different models.

Model Positive region Negative region Boundary region

DRSA x4,18 x1,3,7,8 x2,5,6,9,10,11,12,13,14,15,16,17,19,20

Rq-VC-DRSA x4,18 x1,3,7,8,12,16 x2,5,6,9,10,11,13,14,15,17,19,20

Aq-VC-DRSA x4,10,18,19 x1,3,7,8,12,13 x2,5,6,9,11,14,15,16,17,20

Dq-VC-DRSA I x4,18 x1,3,7,8,12 x2,5,6,9,10,11,13,14,15,16,17,19,20

II x4,10,18,19 x1,3,7,8,12,13,16 x2,5,6,9,11,14,15,17,20

Table 6.6
Decision regions of downward union Cl�2 in different models.

Model Positive region Negative region Boundary region

DRSA x4,5,14,18 ∅ x1,2,3,6,7,8,9,10,11,12,13,15,16,17,19,20

Rq-VC-DRSA x2,4,5,6,14,17,18,19 ∅ x1,3,7,8,9,10,11,12,13,15,16,20

Aq-VC-DRSA x1,2,3,4,5,6,7,10,12,14,15,17,18,19 x8 x9,11,13,16,20

Dq-VC-DRSA I x2,4,5,6,14,17,18,19 ∅ x1,3,7,8,9,10,11,12,13,15,16,20

II x1,2,3,4,5,6,7,10,12,14,15,17,18,19 x8 x9,11,13,16,20

Table 6.7
Decision regions of upward union Cl�2 in different model.

Model Positive region Negative region Boundary region

DRSA x1,3,7,8 x4,18 x2,5,6,9,10,11,12,13,14,15,16,17,19,20

Rq-VC-DRSA x1,3,7,8,12,16 x4,18 x2,5,6,9,10,11,13,14,15,17,19,20

Aq-VC-DRSA x1,3,7,8,12,13 x4,10,18,19 x2,5,6,9,11,14,15,16,17,20

Dq-VC-DRSA I x1,3,7,8,12 x4,18 x2,5,6,9,10,11,13,14,15,16,17,19,20

II x1,3,7,8,12,13,16 x4,10,18,19 x2,5,6,9,11,14,15,17,20

Table 6.8
Decision regions of upward union Cl�3 in different models.

Model Positive region Negative region Boundary region

DRSA ∅ x4,5,14,18 x1,2,3,6,7,8,9,10,11,12,13,15,16,17,19,20

Rq-VC-DRSA ∅ x2,4,5,6,14,17,18,19 x1,3,7,8,9,10,11,12,13,15,16,20

Aq-VC-DRSA x8 x1,2,3,4,5,6,7,10,12,14,15,17,18,19 x9,11,13,16,20

Dq-VC-DRSA I ∅ x2,4,5,6,14,17,18,19 x1,3,7,8,9,10,11,12,13,15,16,20

II x8 x1,2,3,4,5,6,7,10,12,14,15,17,18,19 x9,11,13,16,20

The lower and upper approximations of downward union Cl�2 in DqII-VC-DRSA are

R A
I I
(α,k)

(Cl�2 ) ={x1, x2, x3, x4, x5, x6, x7,

x10, x12, x14, x15, x17, x18, x19};
R A

I I
(α,k)(Cl�2 ) ={x1, x2, x3, x4, x5, x6, x7, x9, x10, x11,

x12, x13, x14, x15, x16, x17, x18, x19, x20}.
The lower and upper approximations of upward union Cl�2 in DqII-VC-DRSA are

R A
I I
(α,k)

(Cl�2 ) ={x1, x3, x7, x8, x12, x13, x16};
R A

I I
(α,k)(Cl�2 ) ={x1, x2, x3, x5, x6, x7, x8, x9,

x11, x12, x13, x14, x15, x16, x17, x20}.
The lower and upper approximations of upward union Cl�3 in DqII-VC-DRSA are

R A
I I
(α,k)

(Cl�3 ) = {x8};
R A

I I
(α,k)(Cl�3 ) = {x8, x9, x11, x13, x16, x20}.

The related three-way decision regions of different upward and downward unions in different models are concluded in 
the Tables 6.5-6.8. We can make the comparisons between the proposed single-quantitative, double-quantitative variable 
consistency dominance-based rough set models and DRSA based on three disjoint decision regions.
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Here, as x12 ∈ Cl2, we also take x12 ∈ Cl�2 for example. All of the customers x1, x3, x5, x7, x8, x9, x12, x13, x14, x15, x16

and x20 in Cl�2 made an overall evaluation of at least medium. Let us analyze the limitation of DRSA and the advantage of 
the presented Sq-VC-DRSA and Dq-VC-DRSA models from this case study.

Limitation of DRSA:
It is easy to see that for the object x12 (see Table 6.2), D+

R A
(x12) = {x7, x8, x12, x19}. x12 ∈ Cl2 is dominated by 4 objects 

x7, x8, x12, x19, however, one of these objects x19 belongs to the decision class Cl1. It means that the evaluations for all the 
three considered condition attribute values from the customer x19 are not worse than the evaluations from the customer 
x12, while the overall evaluation for the decision attribute value from x19 is worse than x12, so x12 does not belong to the 
lower approximation of upward union Cl�2 . It is just for this reason x19 that object x12 is assigned into the boundary region 
from the definition of DRSA without any fault tolerance mechanism (see Table 6.7).

In the case study, we only considered 20 objects, and this inconsistency happens to the customer x12. For the upward 
union Cl�2 , if the DRSA is used to analyze the consistency of elements in Cl�2 , a few elements (x19) in the dominating set of 
x12 are worse than those in the decision class of x12. Obviously, the reason for this is that the conditions for obtaining the 
upper and lower approximations of DRSA are too strict. When the number of objects in an ordered information becomes 
much larger, such inconsistency will often arise, resulting in more inconsistencies. After adding the fault-tolerant mechanism 
(adding the relative and absolute quantitative consistency levels), x12 belongs to the lower approximation, so that x12 is re-
divided into positive region, which can overcome the limitation of DRSA to a certain extent and make the more reasonable 
decisions. Therefore, it is necessary to add the quantitative consistency levels to the DRSA.

Advantage of Sq-VC-DRSA and Dq-VC-DRSA:
For the relative quantitative consistency level α = 0.7, it is easy to see that |D+

R A
(x12) ∩ Cl�2 |/|D+

R A
(x12)| = 3/4 ≥ α. 

x12 belongs to lower approximation of upward union Cl�2 with relative quantitative consistency level α = 0.7, then x12
is assigned into the positive region in Rq-VC-DRSA, DqI-VC-DRSA and DqII-VC-DRSA models. For the absolute quantitative 
consistency level k = 2, it is easy to see that |D+

R A
(x12)| − |D+

R A
(x12) ∩ Cl�2 | = 1 ≤ k. x12 belongs to lower approximation 

of upward union Cl�2 with absolute quantitative consistency level k = 2, then x12 is assigned into the positive region in 
Aq-VC-DRDA, DqI-VC-DRSA and DqII-VC-DRSA models.

Compared with DRSA, when we consider a certain level of quantitative information in the upper and lower approxima-
tions, we can avoid the inconsistency situation such as the object x12. Thus, appropriately relaxing the restrictions between 
the dominating set (dominated set) and the upward union set or downward union set in DRSA provides us a more intuitive 
and acceptable semantic interpretation and enlarges the scope of application of DRSA.

7. Conclusions

The DRSA proposed by Greco et al. [7,8] has some effects in dealing with an ordered information system, however, 
if there is a hesitation about the value of the decision attributes in a given decision ordered information system, the 
disadvantage of DRSA will appear. The reason for the disadvantage of DRSA is that there is no fault-tolerance mechanism for 
the conditions given to the upper and lower approximations of DRSA, and the restrictions between the dominating set (the 
dominated set) and the upward union or downward union are too strict. Hence, Greco et al. [13] presented a VC-DRSA to 
improve the discussed disadvantage of DRSA. In order to further overcome the disadvantage of DRSA, we develop the relative 
and absolute quantitative consistency levels in an ordered information system when the upper and lower approximations 
of DRSA are required to contain relative and absolute quantitative information, and then construct the Sq-VC-DRSA models 
(including Rq-VC-DRSA and Aq-VC-DRSA) and Dq-VC-DRSA models. In particular, it could be seen from the definition of 
lower and upper approximations in Rq-VC-DRSA that the VC-DRSA presented by Greco et al. [12,13] is actually the Rq-
VC-DRSA. In this paper, we explain the new concepts and models by using real-life case study, and discuss the decision 
regions of upward union and downward union of decision classes in different models. We also interpret these two kinds of 
quantitative consistency levels by analyzing the decision rules about the objects divided into different decision regions at 
different kind of quantitative consistency levels and by comparing them with DRSA. In the future work, some aspects of the 
Dq-VC-DRSA models deserve to be studied, including the uncertainty measure of the models and the attribute reduction 
method based on the two quantitative consistency levels.
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